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ABSTRACT

We consider a non — zero sum differential game based on the existence of Nash Equilibrium points for a two player non — zero sum stochastic
differential game. This is obtained by analyzing a parabolic system strongly coupled by discontinuous terms. The loss of continuity of like feedback

leads to consider a parabolic system.
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INTRODUCTION:

The main focus of this paper is to study the existence solutions
of a two player non — zero — sum stochastic differential game.
We consider a differential point of view the problem is
formulated by using two controls and two payoffs. The problem
formulation based on the Friedman and Bensoussan and Frehse
approach that the feedback is continuous. We are interested by
studying the problem assuming that the controls take values in
compact sets. In this case we cannot expect a Nash Equilibrium
among continuous feedback and the Hamilton functions
associated with the game are non — smooth.

Here, we consider a parabolic system strongly coupled by
discontinuous terms since the feedback due to the risk
constraints. In for from the usual necessary condition is satisfied
by the value of the Nash Equilibrium feedback in terms of the
Hamilton — Jacobi theory, we reduce our seekers to studying the
existence of a regular solution to a system of non — linear
parabolic equations which contains the Heaviside graph. By this
result, we are able to construct Nash Equilibrium feedback
whose optimality is proved by using the verification approach in
the series of (2), (3), and (4). The motivation of this study is
compact control sets comes from standard non — linear Control
Theor

2.1 Basic definitions
Given T > 0 a finite time horizon and t € [0,T).Let
(Q, F, P) be the canonical probability space, defined as,

Q. ={weC[tT RF}: w; =0 (1)

The o —algebra Fin the family of Borel sets completed with
respect to Weiner measure [P; and the underlying
filtrationF;. t < s < Tis generated by the Brownion Paths. The
stochastic game will be formulated in this space. Consider a
stochastic dynamical system, for which the state process evolves
according to the stochastic differential equation,

dX* = f(s, X% ug, z5)ds + o (5, Xe%,u, z)dws, <t<s<
T(2)

With initial conditions X;* = x € R?

The payoft is defined as,

J(t,x;u,z) = E {ftTL(s,XSt"‘, U, 7z, ) ds + g(Xf"‘)}(3)

WithL : [0,T] x RE¢x U X Z — R being bounded, continuous
and Lipschitz continuous with respect to t,xuniformly for
(u,z) EU x Zand g:R* > R being bounded and Lispchitz
continuous. The player I controlling ugis trying to minimize J,
while player Ilis trying to maximize J controllingz,.

Given 0 <t < s < T, define an admissible control process u :
[t,s] x Q; = U(respectively z : [t,s] X Q, = Z) for player
I(respectively playerll) on [t,s]as an F. progressively
measureable process taking values in U(respectively Z), for r €
[t,s].The set of admissible controls for player I (respectively
playerlIl) is denoted by U(t,s)(respectively Z(t,s)). Where

Is a valueof the Nash Equilibrium point (7, ;).

2.5 Definition
Pre — Hamilton Functions
We define Pre — Hamilton’s

H; (t,x,p,us,uy) : (0,t) X RN X RN x U; XU, > R

i =12..

Hy (t,x,p,u(t,x),u,(t,x)) = p.f(t, x, uq (¢, x),u, (t, x)) +
my (6%, u, (¢, %), u, (£,))(7)
Hy (6,2,0,u (6,%), U, (£, x)) = p. f(&,x,u, (8, %), up (t, %)) +
my (L, x,uy (¢, %), U (£, x))(8)

3. Description of the problem
Let Q be a bounded smooth domain inR". Let X be a process

dX(s) = f[s,X(s), u, (s, X(s)), u, (s, X(s))]ds
+ o[s, X(s)]dw

With the initial conditions X (t) = x,s € [t,T],x € Q € RV

For each s,X(s) represents the state evolution of a system
controlled by two players. The i® player acts by means of a
feedback control function

up: (6, T) X RN - U; € R, wherei = 1,2, ...

If the value functions V;,V, € C*?and replacing the time
variable (T — t) by t, then we get that V;,V, solutions in Q; =
(0,T) x Q.

3.1 Solution procedure of parabolic system:
The parabolic system equations coupled by Nash Equilibrium
given by

N
vy(tx) z e (6) %V, (t, x)

Jat =3 0x,0x;,
= Hl [(f, X, VXIIV/l' u;(t: X, val)'u; (t' X, VxVZ) (9)
aV,(t, x) z o, (t )aZVZ(t,x)
at nk X 9%,
Rk=1
= H,[(t, x, V. Vy, u; (¢, x, V,.Vy), us (¢, x, V.. Vs) (10)

Vi=g.tx); V; = g,(t,x) on 9,07

Proof: For any fixed p, we use the following results,
ui(t,x,p) € Heav (p.fl(x) +
m (x))(l 1)
u;(t, x,p) € Heav (p.fz(x) +
my(x))(12)

Where Heav (y) is the Heaviside graph defined as
Heav (y) =1 if y>0(12.1)
Heav (y) =0 if y<0(12.2)
Heav (0) =[0,1](12.3)
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u(t, s), Z(t, s) are control functions.

2.2 Definition
A control function u; € U;will be called admissible if it is
adapted to the filtration defined on the probability space.

2.3 Definition
A pair of admissible controls (uy,u;) € U; X U,is called the
Nash Equilibrium point of the differential game (2) — with
payoff (3)

if ]1(t! X, u_pu_z) = jl(t! X, ul!@)(“')
]Z(t,x,u_l,u_z) Z]Z(tv xvu_l' u2)(5)
For all (t,x) € (0,7)xQ and for all (uy,u,)€U; XU,
admissible controls.

2.4 Definition

Vl(t’ X) = jl(t' x,u_l,u_z) : VZ (t! x) = ]2 (t! X, u_lﬂ u_Z)(6)

Solutions (13) — (15) are uniformly parabolic systems strongly
coupled by the Heaviside graph containing the First order
derivatives of the unknown functions.

3.2 Existence of a solution to the parabolic system
3.2.1 Definition:

The solution (V;, V,)is said to be a strong solution, if

Vy(t, %), V,(t, x) € H*(Q7) N W2 (Qr) for some x €
(0,1), g>N+2

Equations (13) — (14) hold almost everywhere (15) holds.

3.3 Existence of a solution to the parabolic system statement:
From the assumptions the Heaviside graph Heav (y) = 1 if y > 0,
Heav (y) =0 if y <0, and Heav (0) = [0, 1], there exists at least a
strong solution (V;, V,)of the parabolic system (13) -

(15).

Proof: let as consider the approximation problems obtained by

replacing the Heaviside graph Heav (y)with smooth
functions H,,:

H,(y) €C=(R),  H,(y) € Lo

H0)=0 if y<0

H,() =1 ifyzai

Hy, =20

H,(y) - Heav(y) € L,(x),p > 1,k < RIs any compact set of
R.
H,(y) - Heav (y) € C°Outside of a neighborhood of y — 0
Now we denote V;,,,V ,, be the solutions of the problem.
2
{avm ZN IV }
_ CpputLLE
at = 0xp,0x,

= (valn'fl + ml)Hn(valn'fl + ml)
+ (Vo Vi H) (Vo Vo £ + mp) in Q.

Wy, ZN: o
at

hk=1

02V,
hk 9x, 0
= (Vi Von- f5 + mp)Hy (V, V. f, + mp)
+ (Vi Vo B Hp) (Vi Vop. f; +my) in Q.
Vln =9u VZn =92 in ‘Qr

Hence the proof

4. Existence of a Nash Equilibrium point:

Statement:Let (V;, V,)be a strong solution of the parabolic
system (13) — (15), then any admissible control (uy,u;)such
that,

u;(t,x) € Heav (V,CV1 (t,x).f,(x) + ml(x))(IS.l)
U, (t,x) € Heav (V,CV2 (t,x).£,(x) + mz(x))(15.2)

Is a Nash Equilibriumpoint.
|

Using the relations (11) - (12) in (9) — (10), then we get,

N 2
{(Wl Z o( oV ]
-t kT
Jat = 0x,,0x;,
€ (V,Vy. £, (%)

+ ml(x)) Heav (V,\V;.f; (x)
+m;(x)) 13)

%av2 i LA ]
92 _ s
at = 0x,0x),
€ (V, Vo £,(%)

+m,(x)) Heav (V,V,.f,(x)
+ mz(x)) (14)

From (13) — (14), we get,
Vi(t,x) = g1(t,x) ; V,(t, x) = g,(t, x)ond,Qr(15)

W, ~ 2%V, -
FTI hzl ochkm =H,(x,t,V,.v,, U, U3)

= (Vevify + my)ug + V,v, 5,85 (18)
N
av. 0%V, I
a_tz - Z K Wazxk = Hy(x,t, V. 0, Uy, 105)
Rk=1
= (V,vofy, + mp)w,
+ Vv fiu; (19)
From (15.1) — (15.2), we have
N
A RA
Fr Z e 0x,0x
hk=1 h=k

€ (Vyvy.f; + my)Heav(V,vy.f; + my)
+ V,vy.fyHeav(V,v,.f, + m;)(20)
W, < %V,
I Z Xhi 0x,0x
Rk=1 h% K
€ (Vyv,.f, + my)Heav(V,v,.f, + m,)
+ V,v,.fiHeav(V,v,.f; + my)(21)
From the above, we conclude that
Vit x) = g1(t, %) ; Va(t,x) = g2(t,x) on 9,Qr
Let us now fix (uy,u,) € U; X U, admissible controls and

denote

{W1(t’x) =[x u, Up)
wy(t, %) = Jo(t, %, U, up)

Je2)

The couple (W1, W) solves the following parabolic system:

W %w, .
G Mgy, LT )
h k
hk=1

= (Vew,fy + my)uy
+ V,w, fou, in Qr (23)

N
ow, %w, _
¥ z “hkm = H,(x,t, V,wp, Uy, )
hk=1
= (V,wofy + my)u,
+ V,w,fiuy in Qp (24)

w; (t,x) = g, (t,x) ; wy(t,x) = g,(t,x) on 8,Qp
wy,w, € qu'z(QT).

From the expression of H,, H, taking into account, we have that,
for any p fixed,

(pfi + mpu, (£, x) < (pfy + mu; (8, x)(24.1)
(of2 + muy (8, x) < (pf, + M)z (8, x)(24.2)

d J 92

Z z,

— = X - -
at Z " ox ox

Consider now the functions z := v —w z := v —w .from
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Proof:Instead of proving u;(t,x) € Heav (V,V;(t,x).f;(x) +
m; (x) it is enough to show that
{]1(15: XU, %) = J1 (6 x, ul'u_Z)}(l6)

J2(t 2,0, %z) = Jo (8 %, U, up)

For all (uy,u,) € U; X U,admissible controls.

Vl(tl x) = jl(tl X, u—ll u_Z)
Let us denote, vy(t, %) = o (t, x, 7y, )

Using above relations in (16), we get,
{V1 tx) =1t xuy, u_z)}(”)
va(6,%) = Jo (6 %, Uy, uy)

Consider now the functionsz 1 :=v_l-w_1,z 2 :=v 2-w 2. from
systems (18)—(19) and (23)-(24) we have,

dz. %z,

S Z ot s = (Vyvy £y + M)W + Vv £11 — (Vowy. £y + my)uy — Vowy. fi5in0

at 0xp0xy

=
N

oz 9%z,
=2 _ e —2 = (Vevy. £y + mp)w; + Vv, £y — (Vews. £, + my)u, — Vow,. fig in Qg
at =3 Axpdxy

2y =2,=0 ond,Qr

Taking into account (24.1) and (24.2), we obtain

N
0z, 0%z,
__E O
a . "k B, 0y,

> (Vevofy + m)w + Vv 6,0 — (Vewy. f; + m)uyy

- Vw,. fu;

=Vezy. (fin

+ foUz) in Qr (25)

N
02, Z « 0%z,
22 e
at A 0x,0x;
> (Vo fp + my)u, + Vv, £ — (Vew,. £, + my)u,
- V,w,. fiuy
= V2, (o
+ fity) in Qr (26)
z1 =2, =0 ond,Qr

Equations (25), (26) are no longer coupled and the terms fiu, +
fou,, fou, + fiu; are known and bounded. Hence we can apply
an extension of the maximum principle to parabolic equations
whose coefficients are in L obtaining

z;(t,x) =0, z,(t,x) =0 in Qr(27)
From (27) we obtain (16). i.e., the result.

CONCLUSION:

The model we presented in this paper is the non — zero sum (in for two
player) stochastic differential game with discontinuous feedback. We
are the value of Nash Equilibrium feedback in terms of Hamilton-
Jacobi theory to reduce the existence of a regular solution to a system
of non-linear parabolic equations have been studied. Further, Nash
Equilibrium point for non-zero-sum even for N>2 more players game
analyzed.
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